One of the key concepts in CAS is that the behaviour of the system isn't easy to predict. So if you reach in and poke some element of a complex adaptive system, you can't know for sure what the eventual outcome will be (remember the monkeys around the campfire - was the difference between an opposable thumb and a prehensile tail really so significant??)
And yet every action humanity takes - a single person writing a blog, or a company accidentally spilling oil into the ocean - is poking a CAS on some level. So there are billions of people out there interacting with many levels of CAS every second of every day...And yet by the definition of a complex system, the outcome of all these interactions is difficult to predict.
Giving a monkey a thumb didn't change the world overnight, but over millenia, the ripple effect has been huge. How could anyone have predicted this? Between the monkey and an octopus, I probably would have bet on the octopus being the one to take over the world...After all, it's got eight bloody arms to figure out how to make a good cup of coffee!
Our problem is that in complex adaptive systems, changes are constantly occurring - how do you know which one will have a significant impact? Especially when the impact can take a long time to become apparent?
The evolution of the thumb is a perfect example of a lever point: a small change with a big impact.
Figuring out how to identify the lever points in a given system is a huge motivation for the general study of CAS. I would almost define "self-preservation" as identifying the lever points in the systems with which you interact, then doing your best to push the good ones and prevent the bad ones.
Wednesday, June 27, 2007
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment